

RTL8801 PHY/IEEE 1394A

3 port 100/200/400 Mb/s Cable Transceiver/Arbiter Chip

1. Features

- ◆ Fully support provisions of IEEE1394-1995 for High- Performance Serial Bus and the P1394a draft 2.0 standard
- ◆ Provides three fully compliant cables ports at 100/200/400 Mbits/s and available with one, two or three ports
- **♦** Fully compliant with Open HCI requirements
- ♦ Full P1394a additional function support
- ♦ Support optional 1394 Annex J electrical isolation barrier at PHY-link interface
- Support power-down feature to conserve energy in battery powered applications
- **♦** Cable power presence monitoring
- ♦ Separate cable bias (TPBIAS) and driver termination voltage supply for each port

- ◆ Encode and decode functions included for data-strobe bit level encoding
- ◆ Support LPS/link-on pin for PHY-link interface
- ♦ Incoming data resynchronized to local clock
- ◆ Single 24.576 MHZ crystal provide transmit/receive data at 100/200/400 Mbits/s and LLC clock at 49.152 M
- Node power-class information signaling for system power management
- ♦ Adaptive equalizer
- ♦ Easy configured as a repeater
- ♦ Single 3.3V power supply
- ♦ 64 pin LQFP package

2. General Description

The RTL8801 provides three-port physical layer(PHY) function in a cable-based IEEE 1394-1995 and IEEE P1394a network. Each cable port incorporates two differential line transceivers. The transceivers include circuitry to monitor the line conditions as needed for determining connection status, for initialization and arbitration, and for packet reception and transmission.

Data bits to be transmitted through the cable ports are received from the Link on 2/4/8 data lines (D0-D8), and are latched internally in the RTL8801 in synchronization with the 49.152 MHZ system clock these bits are combined serially, encoded, and transmitted at 98.304, 196.608 or 393.216Mbps as the outbound data-strobe information stream. During transmission, the encoded data transmitted differential on the TPB cable pair(s), and the encoded strobe information is

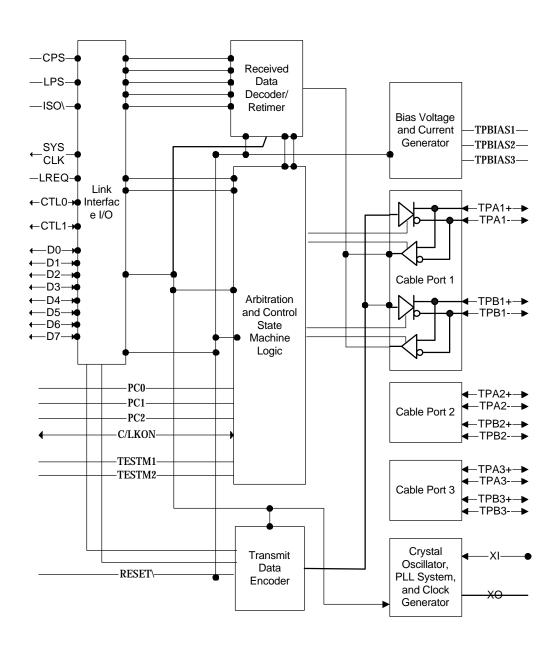
transmitted differentially on the TPA cable pair(s).

During packet reception the TPA and TPB transmitters of the receiving cable port are disabled, and the receivers for that port are enabled. The encoded data information is received on the TPA cable pair, and the encoded Strobe information is received on the TPB cable pair. The received data-strobe information is decoded to recover the received clock signal and the serial data bits. The serial data bits are split into two or four parallel transmitted (repeated) out of the other active (connected) cable ports.

Both the TPA and TPB cable interfaces incorporate differential comparators to monitor the line states during initialization and arbitration. The output of these comparators are used by the internal logic to determine the arbitration status. The TPA channel monitors the incoming cable common-mode voltage. The value of this common mode voltage is used during arbitration to set the speed of the next packet transmission. In addition, the TPB channel monitors the incoming cable common-mode voltage for the presence of the remotely supplied twisted-pair bias voltage. The presence or absence of this common-mode voltage is used as an indication of cable connection status. The cable connection status signal is internally debounced in the RTL8801 on a cable disconnect-to-connect. The debounced cable connection status signal initiates a bus reset. On a cable disconnect-to-connect a debounce delay is incorporated. There is no delay on a cable disconnect.

3. Pin Assignment

4. Pin Descriptions


Symbol	Type	Pin(s) No.	Description
C/LKON	I/O	18	(input) Bus manager capable. When set as input, C/LKON specifies in the Self-ID packet that the node is bus manager capable.
			(output) Link on. When set as an output, C/LKON indicates the
			reception of a link-on packet by asserting a 6.114 MHZ square wave
			signal.
CNA	0	15	CNA is asserted high when none of the PHY ports are connected to
			another active port. This circuit remains active during the power down
			mode.
CPS	I	24	Cable power status. CPS is normally connected to the cable power
			through a 400-Kohm resistor. This circuit drivers an internal
I DC	T	1.6	comparator that detects the presence of cable power.
LPS	I	16	Link power status. LPS is connected to either the VDD supplying the
			LINK or to a pulsed output that is active when the LINK is powered for the purpose of monitoring the LINK power status
LREQ	I	1	for the purpose of monitoring the LINK power status. Link request. LREQ is an input from the LINK that requests the PHY
LKEQ	1	1	to perform some service.
ISO\	I	23	Link interface isolation input. This pin controls the operation of output
150 (1	23	differentiation logic on the CTLn and Dn pin. If an optional isolation
			barrier of the type described in Annex J of IEEE 1394-1995 is
			implement between the PHY and LLC. This pin should be tied low to
			enable the internal differentiation logic.
CTL0	I/O	3,4	Control I/O. the CTLn pins are bi-directional communications control
CTL1			signals between the PHY and LLC.
D0-D7	I/O	5, 6, 8, 9, 10,	Data I/O. The D terminals are bi-directional and pass data between the
		11, 12, 13	PHY and LLC.
SYSCLK	О	63	System clock. SYSCLK provides a 49.152 MHZ clock signal, which is
	7/0	2.2.2.	synchronized with the data transfers to the LLC.
TPA1+	I/O	36, 35	Port1, cable pair A. TPA1 is the port A connection to the twisted-pair
TPA1-			cable .Board traces from each pair of positive and negative differential
			signal pins should be kept matched and as short as possible to the external load resistors and to the cable connector
TPA2+	I/O	41, 40	Port2, cable pair A. TPA2 is the port A connection to the twisted-pair
TPA2-	1/0	41, 40	cable .Board traces from each pair of positive and negative differential
11712			signal pins should be kept matched and as short as possible to the
			external load resistors and to the cable connector
TPA3+	I/O	47, 46	Port3, cable pair A. TPA3 is the port A connection to the twisted-pair
TPA3-			cable .Board traces from each pair of positive and negative differential
			signal pins should be kept matched and as short as possible to the
			external load resistors and to the cable connector
TPB1+	I/O	34, 33	Port1, cable pair B. TPB1 is the port B connection to the twisted-pair
TPB1-			cable .Board traces from each pair of positive and negative differential
			signal pins should be kept matched and as short as possible to the
TTDD 4	7/0	20. 20	external load resistors and to the cable connector
TPB2+	I/O	39, 38	Port2, cable pair B. TPB2 is the port B connection to the twisted-pair
TPB2-			cable .Board traces from each pair of positive and negative differential
			signal pins should be kept matched and as short as possible to the external load resistors and to the cable connector
TPB3+	I/O	45, 44	Port3, cable pair B. TPB3 is the port B connection to the twisted-pair
TPB3-	1/0	75, 74	cable .Board traces from each pair of positive and negative differential
11100			signal pins should be kept matched and as short as possible to the
			external load resistors and to the cable connector
		1	

	1 -		
TPBIAS1	О	37, 42, 48	Portn, twisted pair bias. It provides the 1.86-V nominal bias voltage
TPBIAS2			needed for proper operation of the twisted-pair cable drivers and
TPBIAS3			receivers and for sending a valid cable connection signal to the remote
			nodes.
PC0-PC2	I	20, 21, 22	Power class indicators. The PC signals set the bit values of the three
			power-class bits in the Self-ID packet (bit 21, 22 and 23). These bits
			can be programmed by tying the terminals to VDD or to GND.
XI	-	59, 60	Crystal oscillator. XI and XO connect to a 24.576 MHz parallel
XO			resonant fundamental mode crystal
PLLGND	-	52, 56	PLL circuit ground. These pins should be tied together to the low
			impedance ground plane
PLLVDD	-	51	PLL circuit power. PLLVDD supplies power to the PLL circuit
AVDD	-	30,31,43,50.	Analog power. AVDD supplies power to the analog port of the device
AVSS	-	32,49,53,54	Analog ground. These pins should be tied together to the low
			impedance ground plane
BTSET	I	55	Current Setting Resistor input. This pin is connected to an external
			resistor to set the internal operating current and cable driver output
			current
PDISABLE	I	19	Port configuration monitor input. The pin is only active in power on
			stage and meets the requirement of Open HCI.
DVDD	-	7,17,26,57,	Digital power. DVDD supplies power to the digital port of the device
		62	
DVSS	-	2,14, 25,29,	Digital Ground. These pins should be tied together to the low
		58,64	impedance ground plane
RESET\	I	61	Reset. An external capacitor in parallel with a resistor are required for
			proper power-up operation
TEST1	I	28	Test control input. This pin is used in the manufacturing test of the
			device. For normal use it should be tied to DVSS.
TEST2	I	27	Test control input. This pin is used in the manufacturing test of the
			device. For normal use it should be tied to DVDD.
	•	•	

5. Functional Block Diagram

6. Functional Description

The operation of the cable PHY can best be understood with reference to the 5.0 block diagram show before.

The main controller of the cable PHY is the block labeled "" arbitration and control state machine logic" which responds to arbitration requests from the link layer and changes in the state of attached ports. It provides the management and timing signals for transmitting, receiving, and repeating packets. It also provides the bus reset and configuration. The cable environment supports the immediate, fair, isochronous, and cycle_master arbitration classes, where the cycle_master class is only available at the root node as described in IEEE1394 stnadard.

Cable arbitration has two parts: a three-phase initialization process (bus reset, tree identify, and self-identify), and a normal operation phase. Each of these four phases is described using a state machine, The state machine and the list of actions and conditions are the normative part of IEEE 1394 standard.

The 'receive data decoder/retimer' block decodes the data-strobe signal and retimes the received data to a local fixed-frequency clock provided by the local clock. Since the clocks of receiving and transmitting nodes can be up to 100 ppm different from the nominal, the data resynch function has to be able to compensate for a difference of 200 ppm over the maximum packet length of 84.31 us (1024 byte isochronous packet at 98.304 Mbit/s). Data reception for the cable environment physical layer has three major functions: decoding the data-strobe signal to recover a clock, synchronizing the data to a local clock for use by the link layer, repeating the synchronized data out all other connected ports.

The "'transmit data encoder" block provides a common interface to the link layer for both packet data and arbitration signal (gaps and bus reset indicators). Data transmission is a straightforward function: the data bits are sent to the attached peer PHY along with the appropriately encoded strobe signal using the timing provided by the PHY transmit clock. If connected port cannot accept data at the requested speed, then no data is send (leaving the drivers in the "01" data prefix condition).

The "link interface" block provides a scalable, cost-effective method to connect one serial bus link chip to one serial bus PHY chip. The width of the data bus scales with the highest speed both chips can support, using two pins per 100 Mbit/s. The clock rate of the signals at this interface remains

constant, independent of speed, to support galvanic isolation for implementations where it is desirable. The PHY has control over the bidirectional pins. The link only drives these pins when control is transferred to it by the PHY. The link performs all unsolicited activity through a dedicated request pin. The possible actions that may occur on the interface are categorized as transmit, receive, status, and request.

7. Internal Register Configuration

There are 16 accessible internal registers in the PHY. The configuration of the Register at addresses 0h to7h is fixed. The register 8h to Fh are an index register window whose contents change based upon the Page_Slect and Port_Select field in Register 7h.

7.1 PHY register field map for the cable environment

address	0	1	2	3	4	5	6	7	
0000b	Physical_ID R PS								
0001b	RHB	IBR			Gap_	_count			
0010b	Exte	ended(11	1b)	reserved		Total_ports((0011b)	ı	
0011b	Max_	_speed(0	10b)	reserved		Delay(00	00b)		
0100b	Link_	Conten	J	litter(000b)	Pw	r_class		
	active	active der			<u> </u>				
0101b	Resume_	ISBR	Loop	Pwr_fail	Time	Port_event	Enab_	Enab_	
	int				out		accel	multi	
0110b				Rese	rved				
0111b	Pa	ige_selec	et	reserved		Port_sel	ect		
1000b		Register0(page_select)							
1111b			R	egister7(p	age_sele	ct)			

PHY register fields map for the cable environment

Field	size	type	Power	description
		J P	reset	
			value	
Physical_ID	6	r	_	The address of this node determined during self-identification. A
				value of 63 indicates a malconfigured bus; the link shall not
				transmit any packets.
R	1	r	-	When set to one, indicate that this node is the root.
PS	1	r	-	Cable Power status.
RHB	1	rw	0	Root hold-off bit. When set to one, instructs the PHY to attempt
				to become the root during the next tree identify process.
IBR	1	rw	0	Initiate bus reset. When set to one, instructs the PHY to initiate a
				bus reset immediately (without arbitration). This bit causes
				assertion of the reset state for 166 us and is self-clearing.
Gap_count	6	rw	3F	Used to configure the arbitration timer setting in order to
				optimize gap times according to the topology of the bus. IEEE
				1394-1995 4.3.6
Extended	3	r	7	constant value of seven, which indiactes extended PHY register
				map is implemented
Total_ports	5	r	3	the number of ports implemented by this PHY
Max_speed	3	r	010	Indicates the maximum speed this PHY supports;
				000 - 98.304 Mbit/s
				001 - 98.304 and 196.608 Mbit/s
				010 - 98.304 ,196.60 and 393.216 Mbit/s
				011 – Up to786.43 Mbit/s
				100 – Up to1,572.864 Mbit/s
				101 – Up to 3,145.728 Mbit/s
Delay	4	r	0	Worse case repeater delay, expressed as 144+(delay*20)ns.
Link_active	1	rw	1	Link enabled. Default value of one subsequent to a power reset.
				Otherwise cleared or set by software to control the value of the
				L bit transmitted in the self-ID packet. The transmitted L bit
				shall be the logical AND of this bit and the LPS signal.
Contender	1	rw	Pin	Contender. Cleared or set by software to control the value of the
			C/LK	C bit transmitted in the self-ID packet.
			ON	

Pwr_class	3	rw	Pin	Power class. Controls the value of the pwr field transmitted in
			PC0-F	the self-ID packet.
			C2	
				000 - Node does not need power and does not repeat
				power
				001 - Node is self-powered and provides a minimum of 15
				W to the bus
				010 - Node is self-powered and provides a minimum of 30
				W to the bus.
				011 - Node is self-powered and provides a minimum of 45
				W to the bus
				100 - Node may be powered from the bus and is using up
				to 1 W.
				101 - Node is powered from the bus and is using up to 1
				W. An additional 2 W is needed to enable the link and
				higher layers.
				110 - Node is powered form the bus and is using up to 1
				W. An additional 5 W is needed to enable the link and
				higher layers.
				111 - Node is powered from the bus and is using up to 1
				W. An additional 9 W is needed to enable the link and higher layers.
Jitter	3	r	0	The difference between the fastest and slowest repeater data
				delay, expressed as (jitter+1)*20ns
Resume_int	1	rw	0	Resume interrupt enable. When set to one, the PHY shall set
				port_event to one if resume operations commence for any port.
ISBR	1	rw	0	Initiate short (arbitrated) bus reset. A write of one to this bit
				instructs the PHY to arbitrate and issue a short bus reset. This bit
				is self-clearing.
Loop	1	rw	0	Loop detect. A write of one to this bit clears it to zero.
Pwr_fail	1	rw	0	Cable power failure detect. Set to one when the PS bit changes
				from one to zero. A write of one to this bit clears it to zero.
Timeout	1	rw	0	Arbitration state machine timeout. A write of one to this bit
				clears it to zero.

Port_event	1	rw	0	Port event detect. The PHY sets this bit to one if any of
				connected, Bias, Disabled or Fault change for a port whose
				Int_enable bit is one. The PHY also sets this bit to one if resume
				operations commence for any port and Resume_int is one. A
				write of one to this bit clears it to zero.
Enab_accel	1	rw	0	Enable arbitration acceleration. When set to one, the PHY shall
				use the enhancements specification in P1394A.
Enab_multi	1	rw	0	Enable multi-speed packet concatenation. When set to one, the
				Link shall signal the speed of all packets to the PHY.
Page_select	3	rw	000	Selects which of eight possible PHY register pages are
				accessible through the window at PHY register address 1000b
				through 1111b, inclusive.
Port_select	4	rw	0000	If the page selected by Page_select presents per port
				information, this field selects which port's registers are
				accessible through the window at PHY register addressed 1000b
				through 1111b, inclusive.

7.2.PHY register page0: Port Status page

The port Status page is used to access configuration and status information for each of the PHY's port. The port is selected by writing zero to Page_select and the desired port number to Port_select in the PHY register at address 0111.

	0	1	2	3	4	5	6	7
1000b	AS	Stat	В	Stat	Child	connected	Bias	Disabled
1001b	Neg	Negotiated_speed			Fault	£ Y	£ Y	£ Y
1010b	£ Y	£ Y	£ Y	£ Y	£Y	£ Y	£ Y	£ Y
1011b	£ Y	£ Y	£ Y	£ Y	£Y	£ Y	£ Y	£ Y
1100b	£ Y	£ Y	£ Y	£ Y	£Y	£ Y	£ Y	£ Y
1101b	£ Y	£ Y	£ Y	£ Y	£Y	£ Y	£ Y	£ Y
1110b	£ Y	£ Y	£ Y	£ Y	£Y	£ Y	£ Y	£ Y
1111b	£ Y	£ Y	£ Y	£ Y	£Y	£ Y	£ Y	£ Y

Note: £ Reserved

PHY register port status page fields

			1	
Field	Size	Type	Power	Description
			reset	
			value	
Astat	2	r	-	TPA line State for the port
				00 = invalid
				01 =1
				10 =0
				11 =z
Bstat	2	r	-	(same encoding as Astat)
Child	1	r	-	If equal to one, the port is a child, else a parent. The
				meaning of this bit is undefined from the time a bus reset is
				detected until the PHY transitions to state T1:Child
				Handshake during the tree identify process(see 4.4.2.2 in
				IEEE Std 1394-1995)
Connected	1	r	0	If equal to one, the port is connected, else disconnected.
				The value reported by this bit is filtered by hysteresis logic
				to reduce multiple status changes caused by contact scrape
				when a connector is inserted or removed.
Bias	1	r	-	If equal to one, bias voltage is detected(possible
				connection). The value reported by this bit is filtered by
				hysteresis logic to reduce multiple status changes caused
				by contact scrape when a connector is inserted or removed.
Disabled	1	rw	0	When set to one, the port shall be disabled. The value of
				this bit subsequent to a power reset is
				implementation-dependent, but should be a strappable
				option.
Negotiated_	3	r	-	Indicated the maximum speed negotiated between this
speed				PHY port and its immediately connected port; the encoding
1				is
				000 – 98.304Mbit/s
				001 - 196.608 Mbit/s
				010 - 393.216 Mbit/s
		1	1	ı

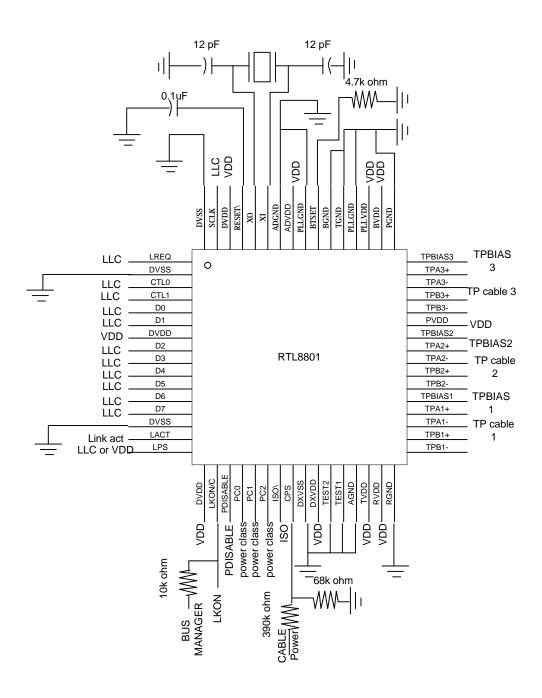
Int_Enable	1	rw	0	Enable port event interrupts. When set to one, the PHY
				shall set Port_event to one if any of Connected, Bias,
				Disabled or Fault (for this port) change state.
Fault	1	Rw	0	Set to one if an error is detected during a suspend or
				resume operation. A write of one to this bit clears it to zero.

7.3 PHY register page 1: Vendor identification page

The Vendor Identification page is used to identify the PHY's vendor and compliance level. The page is selected by writing one to Page_select in the PHY register at address 0111.

	0	1	2	3	4	5	6	7	
1000b		Compliance_level							
1001b		Reserved							
1010b				Vendo	r_ID				
1011b									
1100b									
1101b				Produc	t_ID				
1110b									
1111b									

PHY register Vendor Identification page fields

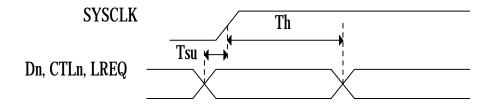

	Size	Type	Description
Compliance	8	R	Standard to which the PHY implementation complies:
_level			0 = not specified
			1 = IEEE P1394a
			All other values reserved for future standardization. The
			default is "1".
Vendor_ID	24	R	The company ID or Organizationally Unique Identifier (OUI) of the manufacturer of the PHY. The most significant byte of Vendor_ID appears at PHY register location 1010 and the least significant at 1100. The default value is "00 e0 4c".

Product_ID	24	R	The meaning of this number is determined by the company
			or organization that has been granted Vendor_ID. The most
			significant byte of Product_ID appears at PHY register
			location 1101 and the least significant at 1111. The default
			value is "88 01 00".

8.0 Application information

9. ELECTRICAL CHARACTERISTICS

9.1. Absolute Maximum Ratings

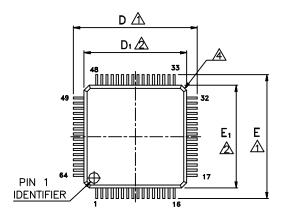

Stresses in excess of the limits may cause permanent damage to the device. The device is not guaranteed to function at these limits.

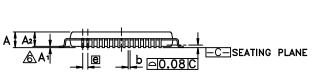
Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	V_{DD}	3	3.6	V
Input voltage	Vi	-0.5	VDD+0.5	V
Output voltage	Vo	-0.5	VDD+0.5	V
Operating Temperature	Top	0	70	¢ J
Storage Temp.	Tstg	-65	150	¢ J

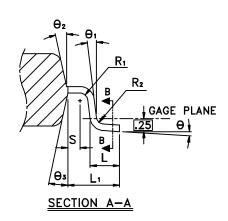
9.2. Operating Conditions

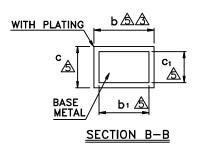
Parameter	Symbol	Min.	Type.	Max	Unit
Supply voltage	V_{DD}	3.0	3.3	3.6	V
High level input voltage	VIIH	0.8Vdd			V
Low level input voltage	VIL			$0.2V_{\mathrm{DD}}$	V
High level output voltage	Voh	2.6			V
Low level output voltage	Vol			0.4	V
Power-up reset time	Trst	2			ms
Differential output voltage	Vod	172		265	mV
Differential input voltage during	Vir	168		265	mV
arbitration					
Differential input voltage during	V_{ID}	118		260	mV
data reception					
Power dissipation	PD			0.55	W
Free air temperature	Top	0		70	¢ J

9.3 Link-PHY Interface Timing






Parameter	Symbol	Min	Type.	Max.	Units
Setup time, Dn, CTLn, LREQ to Sysclk	Tsu	5			ns
Hold time, Dn, CTLn, LREQ before Sysclk	Th	2			ns


10. Outline Diagrams

64 -Pin LQFP

Symbol	Dimension in			Dimension in			
	inch			mm			
	Min	Nom	Max	Min	Nom	Max	
A	-	-	0.067	-	-	1.70	
$\mathbf{A_1}$	0.000	0.004	0.008	0.00	0.1	0.20	
A 2	0.051	0.055	0.059	1.30	1.40	1.50	
b	0.006	0.009	0.011	0.15	0.22	0.29	
b ₁	0.006	0.008	0.010	0.15	0.20	0.25	
c	0.004	Ī	0.008	0.09	1	0.20	
C 1	0.004	=	0.006	0.09	-	0.16	
D	0.4	0.472 BSC			12.00 BSC		
\mathbf{D}_1	0.394 BSC			10.00 BSC			
E	0.4	0.472 BSC			12.00 BSC		
E 1	0.3	0.394 BSC			10.00 BSC		
е	0.020 BSC			0.50 BSC			
L	0.016	0.024	0.031	0.40	0.60	0.80	
L 1	0.039 REF			1.00 REF			
q	0°	3.5°	9°	0°	3.5°	9°	
q ₁	0°	-	-	0°	-	-	
Q ₂	12° TYP			12° TYP			
Q3	12° TYP			1	2° TY	P	

Note:

- 1.To be determined at seating plane -c-
- $\label{eq:continuous} 2. Dimensions \ D_1 \ and \ E_1 \ do \ not \ include \ mold$ $protrusion. \ D_1 \ and \ E_1 \ are \ maximum \ plastic \ body$

size dimensions including mold mismatch.

- Dimension b does not include dambar protrusion.
 Dambar can not be located on the lower radius of the foot.
- 4.Exact shape of each corner is optional.
- 5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- A₁ is defined as the distance from the seating plane to the lowest point of the package body.
- 7. Controlling dimension: millimeter.
- 8. Reference document: JEDEC MS-026, BBC

TITLE: 64LD LQFP (10x10x1.4mm)						
PACKAGE (PACKAGE OUTLINE DRAWING , FOOTPRINT 2.0mm					
	LEADFRAME MATERIAL:					
APPROVE		DOC. NO.				
		VERSION	1			
		PAGE	OF			
CHECK		DWG NO.	LQ064 - P1			
		DATE	NOV. 06.1997			
	REALTEK SEMI-CONDUCTOR CO., LTD					

REALTEK Semiconductor Co., Ltd. reserved all rights of this document. No part of this document may be copied or reproduced in any form or by any means or transferred to any third party without the prior written consent of **REALTEK Semiconductor Co., Ltd. REALTEK** reserves the right to change products or specifications without notice. This document has been carefully checked and is believed to be accurate. However **REALTEK Semiconductor Co., Ltd.** assumes no responsibility for inaccuracies.

